

Abstract— The paper introduces various local models for

solving machine learning (i.e., data mining) problems. In

particular (and, due to their superior results) it focuses on a

novel design of locally linear support vector machines

classifiers. It presents them as powerful alternatives to the

global (over the whole input space) nonlinear classifiers. Locally

linear support vector machine (LL SVM) maximizes the margin

in the original input features space and it never performs the

nonlinear mapping to some kernel induced feature space. In

performing such a task it uses only the K closest points to the

query data point q. In this way it grasps the local decision

function better than the standard global SVM does. This is

shown to be a powerful approach when data are unevenly

distributed in the input space and when a suitable decision

function possesses different nonlinear characteristics in various

parts of the input space. Experiments on eleven benchmark data

sets display both the superior performance of LL SVMs as well

as great performances of other classic locally linear classifiers.

In addition, this is the first paper which proves the stability

bounds for local SVMs and it shows that they are tighter than

the ones for traditional, global, SVM. LL SVM is a natural

classifier for multiclass problems which means that it can be

easily adopted for solving regression tasks.

I. INTRODUCTION

HERE is a well known proverb which says ‘If it looks like

a duck, swims like a duck and quacks like a duck, then it

probably is a duck.’ Such folk sayings can be believed or not

but one thing is certain about them – they were learned the

hard way, and this is why they must be trusted. However,

there is another view about the statement above, which is that

it expresses a classification (decision) rule based on a

similarity, or closeness, measure. In the space of three

features (attributes, inputs) being here the overall outlook, an

ability to swim and a kind of sound that it produces, each

bird (or, in fact, a broader class of animals) will be measured

in respect how far its three features are from duck’s ones.

The smaller the distance between the ‘duck point’ and an

‘unknown bird point’, the higher the likelihood the unknown

bird is a duck.

 More formally, there is a broad range of algorithms which

rely on the distance measure. In fact, all the machine learning

algorithms start by measuring the distances of the known

(training) data points with some metric.

Manuscript received January 24, 2010.

Vojislav Kecman is with Virginia Commonwealth University (VCU),

401 West Main Street, E4244, P.O. Box 843019, Richmond, VA, 23284-

3019, USA (e-mail: vkecman@vcu.edu).

J. Paul Brooks is with the Department of Statistical Sciences and

Operations Research. He is also a Fellow at Center for the Study of

Biological Complexity, College of Humanities and Sciences at VCU, USA

PO Box 843083, Richmond, VA 23284, (e-mail: jpbrooks@vcu.edu)

 Here, we will use a simple, weighted, L2 distance to find

the K nearest neighbors (NNs) to the query q, and to design a

linear SVM (or, some other local classifier) for classifying

the query point. This means that instead of one globally and

nonlinearly (NL) acting SVM (or e.g., neural network) we

will design many locally linear ones. Another difference

between the NL global SVM and the LL SVM approach

taken in this paper is that unlike the former, LL SVM will

maximize the margin in the original input space. Sure, in the

case that one is going to design a local nonlinear SVM (LNL

SVM) classifier, the margins between the m classes within

the K NN data chosen will be maximized in the kernel

induced feature space again. (As for m, the following is valid

1 ≤ m ≤ M, where m is the number of classes in K NNs

sphere and M is a total number of classes in the given

multiclass problem). The decision whether to construct

locally linear or locally nonlinear SVM is the model

builder’s and in the rest of the paper both the notion of local

SVM and the acronym L(N)L SVM refer to Local Linear

and/or Nonlinear SVM. Interestingly enough, the

experiments show that LL SVM usually outperforms LNL

SVM. There is also theoretical evidence (shown here in

section IV) indicating that L(N)L SVM is more stable than

the traditional global NL SVM.

 There has been a range of approaches based on a local

classifier design. First, there are the ideas in [1] presenting

an intuitive theoretical motivation why local models may be

better by the statement that ‘The use of b as an additional

free parameter allows us to find deeper minima of the

guaranteed risk’. In the previous sentence, b is a parameter

defining the size of the neighborhood containing the closest

neighbors; one approach is to let b=K, the number of nearest

neighbors K, which will be used here. That paper was

followed by an implementation of the local linear classifier

in [2]. At that point, a model of choice was a classic linear

classifier trained by implementing weight decay

regularization. Following these two papers, a stronger

theoretical foundation for local models was presented in [3].

The idea of performing local training has not always been

considered as a proper one as explicitly stated in [4, page

253].

Recently, however, several algorithms performing a local

classifier design have been proposed. Among them, there are

two direct predecessors of this paper. In [5], the K-local

Hyperplane Distance Nearest Neighbor algorithm (HKNN)

is introduced. HKNN does not maximize the margin between

classes directly. Instead, it approximates K data points

belonging to each class by linear manifolds, and it calculates

Locally Linear Support Vector Machines and Other Local Models

Vojislav Kecman and J. Paul Brooks

T

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2615

https://www.researchgate.net/publication/45622657_Statistical_Learning_Theory?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221619205_Principles_of_Risk_Minimization_for_Learning_Theory?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/220499847_Local_Learning_Algorithms?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/2539168_K-Local_Hyperplane_and_Convex_Distance_Nearest_Neighbor_Algorithms?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==

distances between the query point q and each manifold. The

algorithm performs quite well but there was a space for a

significant improvement which is proposed in [6] and

explored in [6]-[11] and [19] where the Adaptive Linear

Hyperplane (ALH) algorithm is introduced and tested on

more than 20 various benchmarking data sets for which it

outperforms all the other data mining models (including

SVMs, K-nearest neighbors (KNN), linear discriminant

analysis (LDA), decision trees and HKNN among others), in

terms of average accuracy over all the data sets [6]-[11] and

[19]. ALH is a natural solver for multiclass classification

problems and this led to its straightforward application for

regression problems in [12] where the regression tasks are

reformulated as the multiclass classification problems.

ALH’s powerful improvement is achieved: a) by introducing

the feature weighting method and b) by a new approach for

selecting nearest neighbors. Specifically, the K class

prototypes are selected by using the weighted Euclidean

distance metric, where the feature weight is estimated by

using the ratio of the between-group to within-group sums of

squares. (Some comments on weighting can be found in

[19]). The very same features weighting will also be used in

this paper. As for the choice of K nearest neighbors, unlike in

HKNN which uses the K nearest neighbors from each class,

in ALH the value of K refers to K nearest neighbors to q,

regardless of their class. Hence, there can be from 0 to K

NNs of a certain class within the Km-neighborhood of q. It is

straightforward to see that the procedure used here is also

more sensible than the procedure used in HKNN when the

number of samples in each class differ a lot.

The first part of the LL SVM algorithm is taken from the

ALH algorithm and it applies weights to the features and

chooses the K nearest neighbors in exactly same way as the

ALH algorithm does. The only difference with ALH is that

after K NNs data points to q are found, the linear SVM

classifier (or some other local classifier either linear or

nonlinear) will be designed over the K local data chosen, and

the query q will be assigned to the class found by the

obtained local classifier(s). Recently, in [15] and [16], two

approaches which use ‘a combination’ of KNN and SVM

have been presented. However, both are different in respect

to LL SVM proposed here in two different ways. In [15], the

local SVM has been created from a single element of each

class and the classification is made by SVM if, for a query

point q, its output is bigger than some given threshold.

Otherwise the KNN classifier is used. This is far in both the

spirit and the algorithm itself of what is proposed here. The

approach in [16], called SVM-KNN, is closer to the ideas

presented here, but there are few crucial differences worth of

pointing out. SVM-KNN uses two levels of calculating

distances between the query q and K nearest data; in the first

step Ksl NNs to q are selected by some crude distance metric

(L2 has been mentioned as the crude one), and then K NNs

out of Ksl points are chosen by using some ‘accurate’

distance function (e.g. tangent distance). After these two

steps, a set of further steps is taken and DAGSVM from [17]

is used for classifying a given query q. Note that DAGSVM

searches for a margin in the kernel induced feature space and

not in the original input space as LL SVM does. This is

important because the maximal margin is defined in the

original input features space and maximizing the margin in

the kernel induced features space doesn’t necessarily mean a

creation of a maximal margin in the original input space.

Next, the DAGSVM implements the pairwise construction of

m*(m-1)/2 classifiers (where m stands for number of classes

in K NNs), while LL SVM designs m 1-vs-all ones in solving

multiclass classification problem (which is also known as the

Winner-Takes-All, WTA, method). There is no significant

difference between the two approaches in terms of accuracy,

and, in addition, there is no problem whatsoever to use the

pairwise strategy in LL models instead of WTA. Much more

intriguing analysis and comments to the dilemma on how to

approach multiclass classification problems and what scheme

to use can be found in [18].

There is one more important difference between LL SVM

and SVM-KNN. When a small K is used, according to [16],

SVM-KNN behaves as a KNN classifier. This is never the

case for L(N)L SVM even if using very small number of

NNs to q. Namely, whatever K is used, the final labeling of q

is always done by the separation hyperplane created by local

SVM classifier. Just as an example, consider the case where

there are 4 elements of class i and only 1 element from class

j in K = 5 NNs sphere around q. The particular query q will

be labeled based on what side of the separation hyperplane

created by L(N)L SVM it lies. This means that it will never

be labeled as belonging to class i just because there are 4

times more i points than j ones in a q’s 5 NNs sphere.

The paper continues as follows: section 2 introduces a

sketch of the proposed weighting and K NN selection

scheme used here (while the details can be seen in [6] and in

[19]) and it also presents the strategy how L(N)L SVM is

designed. Section 3 shows the accuracies of six local

classifiers and it compares their performances with a few

other well known classifiers. Section 4 presents the proofs of

the stability (generalization ability) of L(N)L SVM

classifiers. Finally, the conclusions and suggestions for

future works are given.

II. L(N)L SVM FOR CLASSIFICATION TASKS

In the general supervised machine learning problems, a

training set of, say, l instances (samples, measurements) with

d input features is given. Each training instance belongs to

one of a small set of labels with M classes, and it can be

denoted as xi = (xi1, …, xid)
T
 with known class label yi = c,

for i = 1, …, l and c = 1, …, M. The objective is to predict

the class label of an unlabeled query input vector q.

In the L(N)L SVM approach, K NNs of q are first

selected, then a L(N)L SVM is constructed for the selected K

NNs and the class label of q is assigned depending on what

side of the separation hyperplane(s) (in original input feature

2616

https://www.researchgate.net/publication/221533917_Adaptive_Local_Hyperplane_for_regression_tasks?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221364513_SVM-KNN_Discriminative_Nearest_Neighbor_Classification_for_Visual_Category_Recognition?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221364513_SVM-KNN_Discriminative_Nearest_Neighbor_Classification_for_Visual_Category_Recognition?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221364513_SVM-KNN_Discriminative_Nearest_Neighbor_Classification_for_Visual_Category_Recognition?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/220320940_In_Defense_of_One-Vs-All_Classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/4145403_Gene_expression_data_classification_using_SVM-KNN_classifier?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/4145403_Gene_expression_data_classification_using_SVM-KNN_classifier?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221136680_Protein_fold_recognition_with_adaptive_local_hyper_plane_Algorithm?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221136680_Protein_fold_recognition_with_adaptive_local_hyper_plane_Algorithm?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==

space for LL SVM and in kernel induced feature space for

LNL SVM) the query q lies. In choosing K NNs the number

K refers to K NNs to a query q from all the classes. Hence,

there can be from 0 to K members of a certain class within

the K-neighborhood of q.

L(N)L SVM borrows the procedure for finding K NNs to

q from its preceding ALH algorithm by considering the

features weights. In the training stage of L(N)L SVM, the

associated weight for each feature is computed by using the

ratio of the between-group to within-group sums of squares.

Specifically, the feature weights are computed as follows,

()()
()()

2

2

i cj ji c

j

i ij cji c

I y c x x
r

I y c x x

= −
=

= −

∑ ∑
∑ ∑

 , (1)

where I(.) denotes the indicator function, cjx denotes the j-th

component of a class centroid of class c and jx denotes the

j-th component of the grand class centroid. The feature

weight can then be given by the exponential weighting

scheme on the normalized rj ,

()
()

1

exp

exp

j

j d

jj

TR
w

TR
=

=
∑

 , (2)

where Rj = rj / max(rj), and T is a positive parameter that

controls the influence of Rj on wj. If T = 0, then wj = 1/d and

the differences between the Rjs are ignored. On the other

hand, when T is large, a change in Rj will be exponentially

reflected in wj. Equation (2) is known as a softmax, i.e.,

multiple logistic, function which ensures that all the weights

are between zero and one and that their sum equals one. The

feature weights wj computed from the training set will be

used in the test stage too. The resulting feature weights are

then used to compute all the distances given as,

() ()
2

1
,

d

i j ij jj
D w x q

=
= −∑x q . (3)

In the NNs selection stage, the K NNs of the query q are

selected using the K smallest weighted Euclidean distances

between q and all the data points xi (i = 1, …, l). Having K

NNs chosen, a labeling of the unknown query data q is done

as follows:

i) if all K NNs belong to same class c, q is labeled as

belonging to class c i.e., yq = c,

ii) if there are members of only two classes in K NNs, a

single L(N)L SVM is designed and the label of the query

q depends upon on what side of the separating hyperplane

q lies,

iii) if there are members of more than two classes in K

NNs, say all the data points in q’s K NNs sphere belong to

m classes, then m 1-vs-all L(N)L SVMs are constructed

and the query q takes the label of the SVM classifier

which produces the biggest output given that q is the

input. (This is a WTA approach, but in this step some

other strategy can be implemented for solving multiclass

classification task instead).

Note an important fact in building local classifiers – if an LL

SVM classifier is designed over K NNs to q, the margin

between the classes will be maximized in the original input

features space. In other words, in each part of the input

space the classifiers with guaranteed maximal local margins

(the sizes of which will usually be controlled by penalty

parameter C) are created for given query data points. This is

a great advantage in respect to global NL SVMs designed

over the whole input space and over all the training data set.

The experimental results shown below will confirm the

soundness of local linear models idea and the superiority of

LL SVMs in respect to many other classifiers. However,

there is a tiny price to pay for an improved performance. In a

standard NL SVM design there are two tuning parameters;

kernel’s ‘shape’ parameter (which is usually either the order

of polynomial or variance of Gaussian kernel for the two the

most popular kernels), and a penalty parameter C. In training

LL SVM there are three parameters; number of nearest

neighbors K, feature’s weighting parameter T and locally

linear SVM’s penalty parameter C. On the other hand, the

SVM’s training over small number of K data is much faster

than the one over much bigger set of all training data points,

and at this point it seems that a training phase of LL SVM

will be usually faster. In application, i.e., in a test phase, the

classic SVM will have some CPU time advantage because in

the case of LL SVM one will have to find K NNs first, to

design LL SVM next (however, this time with the best, K, T

and C, from the training phase, which will be fast), and to

classify q. The CPU time issues mentioned will be the

subjects of future investigations.

 Sure, a model builder can opt for designing local NL SVM

over the K selected NNs to query q, instead of a LL SVM. In

this case the local margin will be maximal in the chosen

kernel induced feature space and the maximal separation in

the original input features space will not be guaranteed.

Similarly, the model builder can decide to design any other

classifier over K NNs. The first obvious choice is a classic

linear classifier with weight decay. This has already been

investigated in [2] but without input features weighting. In

the present paper, we will show how the feature weighting

helps in achieving higher accuracy rates for all local models.

Obviously, any weighting scheme can be applied within the

local approach presented here, but the ratio of the between-

group to within-group sums of squares seems to be

exceptionally good for capturing relevancies of input

features.

III. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, the comparisons of six locally designed

classifiers with eight competing classifiers, including KNN,

Linear Discriminant Analysis (LDA), SVM, Nearest Feature

2617

https://www.researchgate.net/publication/220499847_Local_Learning_Algorithms?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==

Line (NFL), K Local Hyperplane Nearest Neighbor

(HKNN), Nearest Neighbor Line (NNL), Center-based

Nearest Neighbor (CNN) and ALH, by using leave-one-out

cross-validation technique, are presented. More precisely,

after introducing the data sets used in Table 1, we will show

the average performances of eight classifiers as given in [6]

and [19] first, and then we will compare performances of six

local classifiers with the two best performing classifiers

(ALH and global, i.e., standard, SVM trained over whole

training data set), from [6] and [19]. Eleven real,

benchmarking, data sets are used in experiments. The first

nine data sets are taken from the UCI Machine Learning

Repository [20] (http://archive.ics.uci. edu/ml/), and the last

two ones are the benchmarking data sets for protein

subcellular localization constructed by Reinhardt and

Hubbard [21]. The basic information about all the data sets

is summarized in Table 1. Table 2 shows the average results

over 11 data sets for 8 classifiers and it is reproduced from

[6] and [19]. We use the leave-one-out cross-validation

(LOO CV) procedure for hyper-parameters determination

and for the accuracy estimation of all classifiers over all

datasets. (Only the results for protein subcellular localization

while using SVM and NFL are taken from literature).

All the details of the software used and the simulations

results shown in Table 2 can be found in [6] and [19]. In

addition to the models shown in Table II, a series of

experiments has been performed by using classification and

regression trees (CART) algorithm which produced the

weakest results on the data sets used here [19].

 Table 3 shows the performance of ALH, SVM and six

local classifiers for all eleven data sets. Results for ALH are

taken from [6] and [19] and the results for SVM are

improved over the ones in [6] and [19] by using Active Set

based SVM classifier from [23] and [24].

There are several interesting results in Table 3. First, LL

SVM is the best classifier averaging over all 11 data sets

used. Next, it is a winning model in eight out of 11 data sets

and it was close second in three cases only. Third, the closest

model to LL SVM is the ALH algorithm which is also a local

modeling approach. Fourth, global modeling approaches,

represented by SVMs here, can’t compete with local

classifiers. SVMs results are behind all but one locally

trained model. Fifth, features weighting always helps which

can be followed by comparing LL SVM with and without

weighting (T = 0), as well as looking at local, standard,

linear classifier with and without weighting. Sixth, the local

NL SVM by using second order polynomial kernel is close

third over all eleven data sets; just hinting that maximizing

the margin in a kernel induced feature space may be only

suboptimal. Seventh, the fourth best model is the local linear

classifier with weight decay which was also the approach

taken in the early paper [2], and supports the argument that

local models may be a good alternative. Some theoretical

insight into why LL SVM performs better than global NL

SVM is given in the next section.

IV. STABILITY PROPERTIES OF L(N)L SVM

Now, we establish the stability of L(N)L SVM and derive

some theoretical evidence that the method can be more stable

than global (traditional) SVM. (Note, the tighter the stability

bound, the better the generalization). Our results follow from

Rademacher Theory as developed in [25] and shown in [26].

Theorem 1([26], Theorem 4.9): For a class of functions F ,

let ˆ()lR f be the empirical loss of a decision function lf

selected from F based on a training set of size l. For any

(0,1)δ ∈ , with probability at least 1 δ− ,

ln(2 /)ˆˆ() () () 3
2

l lR f R f C F
l

δ
≤ + + (4)

where ˆ()C F is the Rademacher complexity of F . We now

derive an upper bound on the Rademacher complexity of

F
K,C

, the class of all L(N)L SVM decision functions with

TABLE I

ELEVEN CLASSIFICATION DATA SETS

Data set # samples # features # classes

Iris 150 4 3

Glass 214 9 6

Vote 232 16 2

Wine 178 13 3

Teach 151 5 3

Sonar 208 60 2

Cancer 198 32 2

Dermatology 366 33 6

Heart 297 13 5

Prokaryotic 997 20 3

Eukaryotic 2427 20 4

TABLE II

AVERAGE PERFORMANCES OF 8 CLASSIFIERS ON 11 DATA SETS

 KNN LDA SVM NFL HKNN NNL CNN ALH

Average 83.7 77.6 84.0 81.8 83.6 82.0 81.3 86.9

TABLE III

PERFORMANCES OF LOCAL CLASSIFIERS AND COMPARISONS WITH TRADITIONAL SVM*

 SVM ALH
LL

SVM

LL

SVM

T = 0

L LIN
L LIN

T = 0

L LIN

W.D.

LNL

SVM

P2

Iris 97.3 97.3 98.7 97.3 96.7 98.7 98.7 97.3

Glass 71 75.7 77.6 73.4 72.9 70.6 73.8 76.2

Vote 97 97 97 97 96.1 96.6 96.1 97

Wine 97.2 99.4 99.4 99.4 97.8 97.8 98.9 99.4

Teach 67.6 74.8 72.2 64.9 70.9 64.9 71.5 71.5

Sonar 89.9 93.8 93.3 91.4 92.3 90.4 92.8 89.9

Cancer 84.3 82.8 82.8 82.3 77.3 75.3 77.3 82.8
Dermatology 98.1 98.1 98.9 98.6 97.5 96.7 97.5 98.1

Heart 58.6 60.3 61.6 61.6 56.9 56.9 59.3 61.6

Prokaryotic 91.4 91.7 91.7 91.7 91.6 91.4 91.6 91.2

Eukaryotic 79.4 85.3 85.6 85.1 84.3 84.3 84.9 85.4

Average 84.7 86.9 87.2 85.7 84.9 84.0 85.7 86.4
* T = 0 means no features weighting, L Lin is a classic linear classifier, L Lin W.D.

stands for L classifier with weight decay and LNL SVM P2 is a local NL SVM with

2nd order polynomial kernel.

2618

https://www.researchgate.net/publication/221416460_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221416460_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/220499847_Local_Learning_Algorithms?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/228522789_An_active-set_algorithm_for_Support_Vector_Machines_in_nonlinear_system_identification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/220493496_Support_Vector_Machines_for_Identification_and_Classification_Problems_in_Control_Engineering?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/13725842_Reinhardt_A_Hubbard_T_Using_neural_networks_for_prediction_of_the_subcellular_location_of_proteins_Nucleic_Acids_Res_26_2230-2236?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/225171987_Rademacher_and_Gaussian_Complexities_Risk_Bounds_and_Structural_Results?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==

parameters K and C, where K is the number of nearest

neighbors used for training a local classifier, and C (a.k.a.

the penalty parameter) represents the tradeoff between

maximizing margin and minimizing error in each local SVM

classifier.

Proposition 1: Let (,)k ⋅ ⋅ be the kernel function used when

training an L(N)L SVM classifier. Then,

 ,

1

4ˆ() (,)
l

K C

i i

i

CK
C F k x x

l =

≤ ∑ . (5)

Proof:

()

,

,

, ,

1

,

1

1

1

1

2ˆ() sup ()

2
sup ()

2
sup ()

2
2 ()

2
2 (,)

K C

K C

l
K C K C

i l i
f F i

l

i i
f F i

l

i i
w i

l

i i

i

l

i i

i

C F E f x
l

E w x
l

E w x
l

E CK x
l

CK k x x
l

σ

σ

σ

σ

σ

σ

σ

σ

∈ =

∈ =

=

=

=

=

= Φ

≤ Φ

≤ Φ

≤

∑

∑

∑

∑

∑

 (6)

The first line is the definition of Rademacher complexity,

where the σi are Rademacher random variables taking values

{±1}. In the fourth line, we bound the value of the norm of

the coefficients of the hyperplane in feature space for each

local SVM. There is one local SVM for each observation. To

obtain the bound, observe that for the primal SVM

optimization problem for neighborhood i,

2

1

1
min

2

. . (()) 1

0, 1,...,

K

i j

j

T

j i j j

j

w C

s t y w x b

j k

ξ

ξ

ξ

=

+

Φ + ≥ −

≥ =

∑

, (7)

we can obtain a feasible solution by setting w = 0, b = 1, and

ξj = 2 for all j; therefore, the optimal objective is at most

2CK.

The other steps in the proof follow from the presentation

in [25], Theorem 4.12.

 End of proof

If we derive bounds for global (traditional) SVM in the

same fashion (with a fixed C), we would find the following

upper bound

 2 min{ , }w C N N+ −≤ , (8)

where N+ and N− are the number of positive and negative

observations, respectively. The bound in Proposition 1 for

the Rademacher complexity would be the same except that

the term CK would be replaced by the larger value

min{ , }C N N+ − .

Thus we see that the stability bounds for L(N)L SVM are

tighter than that for traditional SVM by a factor of

min{ , }N N

K

+ − . (9)

V. SOME FINAL REMARKS ON LOCAL SVMS AND OTHER

LOCAL MODELS

Local models show better experimental performance than

traditional globally acting SVM classifiers trained and

designed on all the data and acting over the whole input

space. In addition, the stability bounds for L(N)L SVM are

tighter than that for traditional SVM. These characteristics

are due to the ability of local classifiers to model complex

decision functions by a collection of less complex local

linear and/or nonlinear approximation. Local models are

ideal for small and medium, high dimensional and sparse

data sets often found in health sciences, bioinformatics and

related areas. However, faced with huge data sets there is a

tiny computational price to pay during the training

originating from the need to select K NNs which basically

requires finding all the distances between all the data in

order to select K nearest neighbors to each data point. This is

very well known issue with KNN based classifiers and there

are many proposals to speed up process of finding K NNs.

Any of the method proposed (and there have been quite a

few recently) can be applied here too. There is however good

news in the availability of massive computing boards having

hundreds (and, at the moment, going to thousands) of

computing cores by which the mathematically simple

floating point calculations of distances can be executed very

fast. Thus, very soon, building local classifiers will be a fast

process even faced with huge data sets.

The local classifiers proposed here are good remedies for

a very well known soft spot of the traditional KNN

classifiers which is that they have been heavily influenced by

noisy data. Building the local SVMs by using penalty

parameter C, and allowing in this way outlying points on the

wrong side of the margin, increases the accuracy of local

models significantly. In addition, there is one more property

of K NN classifier which is both good and not-that-good.

Namely, unlike at the traditional SVMs, the information

presented in training data is never lost in the approach

presented here (this is a good part) because all the data are

saved on the machine (which is not-that-good part).

Finally, we remark on solving regression tasks by using

local SVMs and/or other local classifiers. The approach

presented here can be readily applied to the regression

problems in the manner as presented in [12]. L(N)L SVM

2619

https://www.researchgate.net/publication/221533917_Adaptive_Local_Hyperplane_for_regression_tasks?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/225171987_Rademacher_and_Gaussian_Complexities_Risk_Bounds_and_Structural_Results?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==

algorithm is a natural tool for solving multiclass problems.

This property makes it very eligible for solving regression

problems where the basic difference in respect to the

classification is that the output values are real numbers. The

direct way of transferring the regression problem into the

classification task is to perform the discretization of the

target vector y into a set of N classes. This is similar (in fact,

it is almost same as) defining the ‘ε-insensitivity zone’ (a.k.a.

ε-tube) which controls the accuracy of the approximation of

the traditional SVMs in a regression. However, unlike in

later, the L(N)L SVM algorithm (after the discretization)

solves the regression problem as the multiclass classification

task. In such a formulation, the use of the L(N)L SVM is

natural.

VI. CONCLUSION

The paper introduces locally linear and/or nonlinear SVM

classifier algorithms as well as the other local models for

solving classification problems. L(N)L SVMs are natural

solvers of multiclass classification tasks. The algorithms use

the ratio of the between-group to within-group sums of

squares for features weighting but a model presented here

works for any other weighting scheme. LL SVM creates a

local SVM model over K NNs data to the query q and it

displays great performance in beating traditional SVM, ALH

and eleven other algorithms averaging over eleven

benchmarking datasets. This is attributed to the ability of

local classifiers to model complex decision functions by a

collection of less complex local approximations. In addition,

if LL SVMs are designed they create guaranteed maximal

margin classifiers in the original input features space.

Theoretical evidence provided in the paper shows that the

stability bounds for L(N)L SVM are tighter than that for

traditional SVM. Due to the natural capacity for solving

multiclass problems L(N)L SVM is also an ideal tool for

solving regression tasks after transforming them into

multiclass classification problems.

ACKNOWLEDGMENT

The paper is an independent extension of the previous

joint research on ALH algorithm done by Tao Yang (while

working on his PhD thesis) and the first author, who

gratefully acknowledges Dr. Yang for his tireless efforts in

developing novel machine learning tools.

REFERENCES

[1] V. Vapnik. “Principles of risk minimization for learning theory”,

Advances in Neural Information Processing Systems (NIPS), 4, pp.

831-838, 1991.

[2] L. Bottou and V. Vapnik. “Local learning algorithms,” Neural

Computation, 4(6), pp. 888-901, 1992.

[3] V. Vapnik. Statistical learning theory. New York, Wiley, 1998.

[4] C. Bishop. Neural Networks for Pattern Recognition, Oxford

University Press, 1996.

[5] P. Vincent, and Y. Bengio, K-local hyperplane and convex distance

nearest neighbor algorithms, Advances in Neural Information

Processing Systems (NIPS), 14, pp. 985–992, 2001.

[6] T. Yang and V. Kecman, Adaptive local hyperplane classification.

Neurocomputing 71, pp. 3001-3004, 2008.

[7] Yang T., Kecman V., Face recognition with adaptive local hyperplane

algorithm, Pattern Analysis & Applications, Springer-Verlag, Vol.

13, Nr. 1, pp. 79-83, 2010.

[8] Yang T., Kecman V., Adaptive local hyperplane algorithm for

learning small medical data sets, Expert Systems, The Journal of

Knowledge Engineering, Wiley Interscience, Blackwell Publishing,

Vol. 26, No. 4, pp. 355-359, 2009.

[9] G.C. Chen, J. Warren, T. Yang, and V. Kecman, Adaptive K-Local

Hyperplane (AKLH) Classifiers on Semantic Spaces to Determine

Health Consumer Webpage Metadata. In the 21st IEEE International

Symposium on Computer-Based Medical Systems, pp. 287-289, 2008.

[10] Yang T., Kecman V., Classification by ALH-Fast Algorithm. In the

Fifth International Symposium on Neural Networks (ISNN 2008),

Special Issue (to appear in an international journal), Beijing, China,

2008.

[11] V. Kecman, T. Yang, Protein Fold Recognition with Adaptive Local

Hyperplane Algorithm, IEEE Symposium Series on Computational

Intelligence 2009, IEEE Symposium on Computational Intelligence

in Bioinformatics and Computational Biology (IEEE CIBCB 2009),

Proceedings, paper #6006, pp.75-78, Nashville, TN, USA, 2009.

[12] V. Kecman, T. Yang, Adaptive Local Hyperplane for Regression

Tasks, Proc. of The 2009 International Joint Conference on Neural

Networks (IJCNN), Atlanta, GA, pp. 1566-1570, 2009.

[13] Kecman V., P. J. Brooks, Locally Linear Support Vector Machines,

INFORMS Annual Meeting, TA04, Joint Session ICS/DM

Optimization in Data Mining/Machine Learning, Presenter P. J.

Brooks, Oct. 10-14, San Diego, CA, 2009

[14] C. Domeniconi, D. Gunopulos, and J. Peng, Large Margin Nearest

Neighbor Classifiers, IEEE Trans. on NN., vol. 16, No. 4, pp. 899-

909, 2005.

[15] X.Q. Shen, Y.P. Lin, Gene expression data classification using SVM-

KNN classifier, In Proceedings of IEEE International Symposium on

Intelligent Multimedia, Video and Speech Processing, pp. 149-152,

Hong Kong, 2004.

[16] H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN:

Discriminative nearest neighbor classification for visual category

recognition, Proceedings of the 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), 2,

pp. 2126-2136 2006.

[17] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs

for multiclass classification Advances in Neural Information

Processing Systems (NIPS), 12, pp. 547-553, 1999.

[18] R. Rifkin and A. Klautau, In defense of one-vs-all classification, J.

Mach. Lear. Res., vol. 5, pp. 101–141, 2004.

[19] T. Yang, The University of Auckland, PhD Thesis, submitted, 2009.

[20] C. Merz, P. Murphy, U.C. Irvine Repository of Machine Learning

Databases, Department of Information and Computer Science, Irvine,

CA, University of California, 1996.

[21] Reinhardt A., Hubbard T., Using neural networks for prediction of the

subcellular location of proteins. Nucleic Acids Research 26, pp.2230-

2236, 1998.

[22] O.G. Okun, K-local hyperplane distance nearest neighbor algorithm

and protein fold recognition. Pattern Recognition and Image Analysis

16, pp.19-22, 2006.

[23] M. Vogt and V. Kecman, An Active-Set Algorithm for Support

Vector Machines in Nonlinear System Identification. In Frank

Allgöwer and Michael Zeitz, editors, Proceedings of the 6th IFAC

Symposium on Nonlinear Control Systems (NOLCOS 2004),

September 1–3, Stuttgart, Germany, pp. 495–500, Oxford, UK,

Elsevier Science, 2004.

[24] M. Vogt, Support Vector Machines for Identification and

Classification Problems in Control Engineering, PhD thesis, TU

Darmstadt, 2005.

[25] P. Bartlett and S. Mendelson, Rademacher and Gaussian

complexities: Risk bounds and structural results. Journal of Machine

Learning Research 3, pp. 463-482, 2002.

[26] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern

Analysis,Cambrige UP, 2004.

2620
All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

