
 

 

 

  

Abstract— The paper introduces various local models for 

solving machine learning (i.e., data mining) problems. In 

particular (and, due to their superior results) it focuses on a 

novel design of locally linear support vector machines 

classifiers. It presents them as powerful alternatives to the 

global (over the whole input space) nonlinear classifiers. Locally 

linear support vector machine (LL SVM) maximizes the margin 

in the original input features space and it never performs the 

nonlinear mapping to some kernel induced feature space. In 

performing such a task it uses only the K closest points to the 

query data point q. In this way it grasps the local decision 

function better than the standard global SVM does. This is 

shown to be a powerful approach when data are unevenly 

distributed in the input space and when a suitable decision 

function possesses different nonlinear characteristics in various 

parts of the input space. Experiments on eleven benchmark data 

sets display both the superior performance of LL SVMs as well 

as great performances of other classic locally linear classifiers. 

In addition, this is the first paper which proves the stability 

bounds for local SVMs and it shows that they are tighter than 

the ones for traditional, global, SVM. LL SVM is a natural 

classifier for multiclass problems which means that it can be 

easily adopted for solving regression tasks.  

I. INTRODUCTION 

HERE is a well known proverb which says ‘If it looks like 

a duck, swims like a duck and quacks like a duck, then it 

probably is a duck.’ Such folk sayings can be believed or not 

but one thing is certain about them – they were learned the 

hard way, and this is why they must be trusted. However, 

there is another view about the statement above, which is that 

it expresses a classification (decision) rule based on a 

similarity, or closeness, measure. In the space of three 

features (attributes, inputs) being here the overall outlook, an 

ability to swim and a kind of sound that it produces, each 

bird (or, in fact, a broader class of animals) will be measured 

in respect how far its three features are from duck’s ones. 

The smaller the distance between the ‘duck point’ and an 

‘unknown bird point’, the higher the likelihood the unknown 

bird is a duck. 

 More formally, there is a broad range of algorithms which 

rely on the distance measure. In fact, all the machine learning 

algorithms start by measuring the distances of the known 

(training) data points with some metric. 
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 Here, we will use a simple, weighted, L2 distance to find 

the K nearest neighbors (NNs) to the query q, and to design a 

linear SVM (or, some other local classifier) for classifying 

the query point. This means that instead of one globally and 

nonlinearly (NL) acting SVM (or e.g., neural network) we 

will design many locally linear ones. Another difference 

between the NL global SVM and the LL SVM approach 

taken in this paper is that unlike the former, LL SVM will 

maximize the margin in the original input space. Sure, in the 

case that one is going to design a local nonlinear SVM (LNL 

SVM) classifier, the margins between the m classes within 

the K NN data chosen will be maximized in the kernel 

induced feature space again. (As for m, the following is valid 

1 ≤  m ≤  M, where m is the number of classes in K NNs 

sphere and M is a total number of classes in the given 

multiclass problem). The decision whether to construct 

locally linear or locally nonlinear SVM is the model 

builder’s and in the rest of the paper both the notion of local 

SVM and the acronym L(N)L SVM refer to Local Linear 

and/or Nonlinear SVM. Interestingly enough, the 

experiments show that LL SVM usually outperforms LNL 

SVM. There is also theoretical evidence (shown here in 

section IV) indicating that L(N)L SVM is more stable than 

the traditional global NL SVM. 

 There has been a range of approaches based on a local 

classifier design. First, there are the ideas in [1] presenting 

an intuitive theoretical motivation why local models may be 

better by the statement that ‘The use of b as an additional 

free parameter allows us to find deeper minima of the 

guaranteed risk’. In the previous sentence, b is a parameter 

defining the size of the neighborhood containing the closest 

neighbors; one approach is to let b=K, the number of nearest 

neighbors K, which will be used here. That paper was 

followed by an implementation of the local linear classifier 

in [2]. At that point, a model of choice was a classic linear 

classifier trained by implementing weight decay 

regularization. Following these two papers, a stronger 

theoretical foundation for local models was presented in [3]. 

The idea of performing local training has not always been 

considered as a proper one as explicitly stated in [4, page 

253].  

Recently, however, several algorithms performing a local 

classifier design have been proposed. Among them, there are 

two direct predecessors of this paper. In [5], the K-local 

Hyperplane Distance Nearest Neighbor algorithm (HKNN) 

is introduced. HKNN does not maximize the margin between 

classes directly. Instead, it approximates K data points 

belonging to each class by linear manifolds, and it calculates 
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distances between the query point q and each manifold. The 

algorithm performs quite well but there was a space for a 

significant improvement which is proposed in [6] and 

explored in [6]-[11] and [19] where the Adaptive Linear 

Hyperplane (ALH) algorithm is introduced and tested on 

more than 20 various benchmarking data sets for which it 

outperforms all the other data mining models (including 

SVMs, K-nearest neighbors (KNN), linear discriminant 

analysis (LDA), decision trees and HKNN among others), in 

terms of average accuracy over all the data sets [6]-[11] and 

[19]. ALH is a natural solver for multiclass classification 

problems and this led to its straightforward application for 

regression problems in [12] where the regression tasks are 

reformulated as the multiclass classification problems. 

ALH’s powerful improvement is achieved: a) by introducing 

the feature weighting method and b) by a new approach for 

selecting nearest neighbors. Specifically, the K class 

prototypes are selected by using the weighted Euclidean 

distance metric, where the feature weight is estimated by 

using the ratio of the between-group to within-group sums of 

squares. (Some comments on weighting can be found in 

[19]). The very same features weighting will also be used in 

this paper. As for the choice of K nearest neighbors, unlike in 

HKNN which uses the K nearest neighbors from each class, 

in ALH the value of K refers to K nearest neighbors to q, 

regardless of their class. Hence, there can be from 0 to K 

NNs of a certain class within the Km-neighborhood of q. It is 

straightforward to see that the procedure used here is also 

more sensible than the procedure used in HKNN when the 

number of samples in each class differ a lot.  

The first part of the LL SVM algorithm is taken from the 

ALH algorithm and it applies weights to the features and 

chooses the K nearest neighbors in exactly same way as the 

ALH algorithm does. The only difference with ALH is that 

after K NNs data points to q are found, the linear SVM 

classifier (or some other local classifier either linear or 

nonlinear) will be designed over the K local data chosen, and 

the query q will be assigned to the class found by the 

obtained local classifier(s). Recently, in [15] and [16], two 

approaches which use ‘a combination’ of KNN and SVM 

have been presented. However, both are different in respect 

to LL SVM proposed here in two different ways. In [15], the 

local SVM has been created from a single element of each 

class and the classification is made by SVM if, for a query 

point q, its output is bigger than some given threshold. 

Otherwise the KNN classifier is used. This is far in both the 

spirit and the algorithm itself of what is proposed here. The 

approach in [16], called SVM-KNN, is closer to the ideas 

presented here, but there are few crucial differences worth of 

pointing out. SVM-KNN uses two levels of calculating 

distances between the query q and K nearest data; in the first 

step Ksl NNs to q are selected by some crude distance metric 

(L2 has been mentioned as the crude one), and then K NNs 

out of Ksl points are chosen by using some ‘accurate’ 

distance function (e.g. tangent distance). After these two 

steps, a set of further steps is taken and DAGSVM from [17] 

is used for classifying a given query q. Note that DAGSVM 

searches for a margin in the kernel induced feature space and 

not in the original input space as LL SVM does. This is 

important because the maximal margin is defined in the 

original input features space and maximizing the margin in 

the kernel induced features space doesn’t necessarily mean a 

creation of a maximal margin in the original input space. 

Next, the DAGSVM implements the pairwise construction of 

m*(m-1)/2 classifiers (where m stands for number of classes 

in K NNs), while LL SVM designs m 1-vs-all ones in solving 

multiclass classification problem (which is also known as the 

Winner-Takes-All, WTA, method). There is no significant 

difference between the two approaches in terms of accuracy, 

and, in addition, there is no problem whatsoever to use the 

pairwise strategy in LL models instead of WTA. Much more 

intriguing analysis and comments to the dilemma on how to 

approach multiclass classification problems and what scheme 

to use can be found in [18].  

There is one more important difference between LL SVM 

and SVM-KNN. When a small K is used, according to [16], 

SVM-KNN behaves as a KNN classifier. This is never the 

case for L(N)L SVM even if using very small number of 

NNs to q. Namely, whatever K is used, the final labeling of q 

is always done by the separation hyperplane created by local 

SVM classifier. Just as an example, consider the case where 

there are 4 elements of class i and only 1 element from class 

j in K = 5 NNs sphere around q. The particular query q will 

be labeled based on what side of the separation hyperplane 

created by L(N)L SVM it lies. This means that it will never 

be labeled as belonging to class i just because there are 4 

times more i points than j ones in a q’s 5 NNs sphere.  

The paper continues as follows: section 2 introduces a 

sketch of the proposed weighting and K NN selection 

scheme used here (while the details can be seen in [6] and in 

[19]) and it also presents the strategy how L(N)L SVM is 

designed. Section 3 shows the accuracies of six local 

classifiers and it compares their performances with a few 

other well known classifiers. Section 4 presents the proofs of 

the stability (generalization ability) of L(N)L SVM 

classifiers. Finally, the conclusions and suggestions for 

future works are given.  

II. L(N)L SVM FOR CLASSIFICATION TASKS 

In the general supervised machine learning problems, a 

training set of, say, l instances (samples, measurements) with 

d input features is given. Each training instance belongs to 

one of a small set of labels with M classes, and it can be 

denoted as xi = (xi1, …, xid)
T
 with known class label yi = c, 

for i = 1, …, l and c = 1, …, M. The objective is to predict 

the class label of an unlabeled query input vector q.  

In the L(N)L SVM approach, K NNs of q are first 

selected, then a L(N)L SVM is constructed for the selected K 

NNs and the class label of q is assigned depending on what 

side of the separation hyperplane(s) (in original input feature 
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space for LL SVM and in kernel induced feature space for 

LNL SVM) the query q lies. In choosing K NNs the number 

K refers to K NNs to a query q from all the classes. Hence, 

there can be from 0 to K members of a certain class within 

the K-neighborhood of q.  

L(N)L SVM borrows the procedure for finding K NNs to 

q from its preceding ALH algorithm by considering the 

features weights. In the training stage of L(N)L SVM, the 

associated weight for each feature is computed by using the 

ratio of the between-group to within-group sums of squares. 

Specifically, the feature weights are computed as follows,  
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where I(.) denotes the indicator function, cjx  denotes the j-th 

component of a class centroid of class c and jx  denotes the 

j-th component of the grand class centroid. The feature 

weight can then be given by the exponential weighting 

scheme on the normalized rj , 
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where Rj = rj / max(rj), and T is a positive parameter that 

controls the influence of Rj on wj. If T = 0, then wj = 1/d and 

the differences between the Rjs are ignored. On the other 

hand, when T is large, a change in Rj will be exponentially 

reflected in wj. Equation (2) is known as a softmax, i.e., 

multiple logistic, function which ensures that all the weights 

are between zero and one and that their sum equals one. The 

feature weights wj computed from the training set will be 

used in the test stage too. The resulting feature weights are 

then used to compute all the distances given as, 
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In the NNs selection stage, the K NNs of the query q are 

selected using the K smallest weighted Euclidean distances 

between q and all the data points xi (i = 1, …, l). Having K 

NNs chosen, a labeling of the unknown query data q is done 

as follows: 

 

i) if all K NNs belong to same class c, q is labeled as 

belonging to class c i.e., yq = c, 

ii) if there are members of only two classes in K NNs, a 

single L(N)L SVM is designed and the label of the query 

q depends upon on what side of the separating hyperplane 

q lies, 

iii) if there are members of more than two classes in K 

NNs, say all the data points in q’s K NNs sphere belong to 

m classes, then m 1-vs-all L(N)L SVMs are constructed 

and the query q takes the label of the SVM classifier 

which produces the biggest output given that q is the 

input. (This is a WTA approach, but in this step some 

other strategy can be implemented for solving multiclass 

classification task instead). 

 

Note an important fact in building local classifiers – if an LL 

SVM classifier is designed over K NNs to q, the margin 

between the classes will be maximized in the original input 

features space. In other words, in each part of the input 

space the classifiers with guaranteed maximal local margins 

(the sizes of which will usually be controlled by penalty 

parameter C) are created for given query data points. This is 

a great advantage in respect to global NL SVMs designed 

over the whole input space and over all the training data set. 

The experimental results shown below will confirm the 

soundness of local linear models idea and the superiority of 

LL SVMs in respect to many other classifiers. However, 

there is a tiny price to pay for an improved performance. In a 

standard NL SVM design there are two tuning parameters; 

kernel’s ‘shape’ parameter (which is usually either the order 

of polynomial or variance of Gaussian kernel for the two the 

most popular kernels), and a penalty parameter C. In training 

LL SVM there are three parameters; number of nearest 

neighbors K, feature’s weighting parameter T and locally 

linear SVM’s penalty parameter C. On the other hand, the 

SVM’s training over small number of K data is much faster 

than the one over much bigger set of all training data points, 

and at this point it seems that a training phase of LL SVM 

will be usually faster. In application, i.e., in a test phase, the 

classic SVM will have some CPU time advantage because in 

the case of LL SVM one will have to find K NNs first, to 

design LL SVM next (however, this time with the best, K, T 

and C, from the training phase, which will be fast), and to 

classify q. The CPU time issues mentioned will be the 

subjects of future investigations. 

 Sure, a model builder can opt for designing local NL SVM 

over the K selected NNs to query q, instead of a LL SVM. In 

this case the local margin will be maximal in the chosen 

kernel induced feature space and the maximal separation in 

the original input features space will not be guaranteed. 

Similarly, the model builder can decide to design any other 

classifier over K NNs. The first obvious choice is a classic 

linear classifier with weight decay. This has already been 

investigated in [2] but without input features weighting. In 

the present paper, we will show how the feature weighting 

helps in achieving higher accuracy rates for all local models. 

Obviously, any weighting scheme can be applied within the 

local approach presented here, but the ratio of the between-

group to within-group sums of squares seems to be 

exceptionally good for capturing relevancies of input 

features. 

III. EXPERIMENTAL RESULTS AND COMPARISONS 

In this section, the comparisons of six locally designed 

classifiers with eight competing classifiers, including KNN, 

Linear Discriminant Analysis (LDA), SVM, Nearest Feature 
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Line (NFL), K Local Hyperplane Nearest Neighbor 

(HKNN), Nearest Neighbor Line (NNL), Center-based 

Nearest Neighbor (CNN) and ALH, by using leave-one-out 

cross-validation technique, are presented. More precisely, 

after introducing the data sets used in Table 1, we will show 

the average performances of eight classifiers as given in [6] 

and [19] first, and then we will compare performances of six 

local classifiers with the two best performing classifiers 

(ALH and global, i.e., standard, SVM trained over whole 

training data set), from [6] and [19]. Eleven real, 

benchmarking, data sets are used in experiments. The first 

nine data sets are taken from the UCI Machine Learning 

Repository [20] (http://archive.ics.uci. edu/ml/), and the last 

two ones are the benchmarking data sets for protein 

subcellular localization constructed by Reinhardt and 

Hubbard [21]. The basic information about all the data sets 

is summarized in Table 1. Table 2 shows the average results 

over 11 data sets for 8 classifiers and it is reproduced from 

[6] and [19]. We use the leave-one-out cross-validation 

(LOO CV) procedure for hyper-parameters determination 

and for the accuracy estimation of all classifiers over all 

datasets. (Only the results for protein subcellular localization 

while using SVM and NFL are taken from literature).  

All the details of the software used and the simulations 

results shown in Table 2 can be found in [6] and [19]. In 

addition to the models shown in Table II, a series of 

experiments has been performed by using classification and 

regression trees (CART) algorithm which produced the 

weakest results on the data sets used here [19]. 

 

 

 Table 3 shows the performance of ALH, SVM and six 

local classifiers for all eleven data sets. Results for ALH are 

taken from [6] and [19] and the results for SVM are 

improved over the ones in [6] and [19] by using Active Set 

based SVM classifier from [23] and [24]. 

There are several interesting results in Table 3. First, LL 

SVM is the best classifier averaging over all 11 data sets 

used. Next, it is a winning model in eight out of 11 data sets 

and it was close second in three cases only. Third, the closest 

model to LL SVM is the ALH algorithm which is also a local 

modeling approach. Fourth, global modeling approaches, 

represented by SVMs here, can’t compete with local 

classifiers. SVMs results are behind all but one locally 

trained model. Fifth, features weighting always helps which 

can be followed by comparing LL SVM with and without 

weighting (T = 0), as well as looking at local, standard, 

linear classifier with and without weighting. Sixth, the local 

NL SVM by using second order polynomial kernel is close 

third over all eleven data sets; just hinting that maximizing 

the margin in a kernel induced feature space may be only 

suboptimal. Seventh, the fourth best model is the local linear 

classifier with weight decay which was also the approach 

taken in the early paper [2], and supports the argument that 

local models may be a good alternative. Some theoretical 

insight into why LL SVM performs better than global NL 

SVM is given in the next section. 

IV. STABILITY PROPERTIES OF L(N)L SVM 

Now, we establish the stability of L(N)L SVM and derive 

some theoretical evidence that the method can be more stable 

than global (traditional) SVM. (Note, the tighter the stability 

bound, the better the generalization). Our results follow from 

Rademacher Theory as developed in [25] and shown in [26]. 

 

Theorem 1([26], Theorem 4.9): For a class of functions F , 

let ˆ( )lR f  be the empirical loss of a decision function lf  

selected from F  based on a training set of size l. For any 

(0,1)δ ∈ , with probability at least 1 δ− , 

 

ln(2 / )ˆˆ( ) ( ) ( ) 3
2

l lR f R f C F
l

δ
≤ + +         (4) 

 

where ˆ( )C F  is the Rademacher complexity of F . We now 

derive an upper bound on the Rademacher complexity of 

F
K,C

, the class of all L(N)L SVM decision functions with 

TABLE I 

ELEVEN CLASSIFICATION DATA SETS 

Data set # samples # features # classes 

Iris 150 4 3 

Glass 214 9 6 

Vote 232 16 2 

Wine 178 13 3 

Teach 151 5 3 

Sonar 208 60 2 

Cancer 198 32 2 

Dermatology 366 33 6 

Heart 297 13 5 

Prokaryotic 997 20 3 

Eukaryotic 2427 20 4 

 

TABLE II 

AVERAGE PERFORMANCES OF 8 CLASSIFIERS ON 11 DATA SETS 

 KNN LDA SVM NFL HKNN NNL CNN ALH 

Average 83.7 77.6 84.0 81.8 83.6 82.0 81.3 86.9 

 

TABLE III 

PERFORMANCES OF LOCAL CLASSIFIERS AND COMPARISONS WITH TRADITIONAL SVM* 

 SVM ALH 
LL 

SVM 

LL 

SVM 

T = 0 

L LIN 
L LIN 

T = 0 

L LIN 

W.D. 

LNL 

SVM 

P2 

Iris 97.3 97.3 98.7 97.3 96.7 98.7 98.7 97.3 

Glass 71 75.7 77.6 73.4 72.9 70.6 73.8 76.2 

Vote 97 97 97 97 96.1 96.6 96.1 97 

Wine 97.2 99.4 99.4 99.4 97.8 97.8 98.9 99.4 

Teach 67.6 74.8 72.2 64.9 70.9 64.9 71.5 71.5 

Sonar 89.9 93.8 93.3 91.4 92.3 90.4 92.8 89.9 

Cancer 84.3 82.8 82.8 82.3 77.3 75.3 77.3 82.8 
Dermatology 98.1 98.1 98.9 98.6 97.5 96.7 97.5 98.1 

Heart 58.6 60.3 61.6 61.6 56.9 56.9 59.3 61.6 

Prokaryotic 91.4 91.7 91.7 91.7 91.6 91.4 91.6 91.2 

Eukaryotic 79.4 85.3 85.6 85.1 84.3 84.3 84.9 85.4 

Average 84.7 86.9 87.2 85.7 84.9 84.0 85.7 86.4 
* T = 0 means no features weighting, L Lin is a classic linear classifier, L Lin W.D. 

stands for L classifier with weight decay and LNL SVM P2 is a local NL SVM with 

2nd order polynomial kernel. 

2618

https://www.researchgate.net/publication/221416460_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/221416460_Kernel_Methods_for_Pattern_Analysis?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/222308419_Adaptive_local_hyperplane_classification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/220499847_Local_Learning_Algorithms?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/228522789_An_active-set_algorithm_for_Support_Vector_Machines_in_nonlinear_system_identification?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/220493496_Support_Vector_Machines_for_Identification_and_Classification_Problems_in_Control_Engineering?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/13725842_Reinhardt_A_Hubbard_T_Using_neural_networks_for_prediction_of_the_subcellular_location_of_proteins_Nucleic_Acids_Res_26_2230-2236?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==
https://www.researchgate.net/publication/225171987_Rademacher_and_Gaussian_Complexities_Risk_Bounds_and_Structural_Results?el=1_x_8&enrichId=rgreq-96c88acf-58df-4a40-b684-6c101b94dd8b&enrichSource=Y292ZXJQYWdlOzIyMTUzMTg4NjtBUzoxMDQ2ODQwODE2NDc2MTdAMTQwMTk3MDAzODExNw==


 

 

 

parameters K and C, where K is the number of nearest 

neighbors used for training a local classifier, and C (a.k.a. 

the penalty parameter) represents the tradeoff between 

maximizing margin and minimizing error in each local SVM 

classifier. 

Proposition 1: Let ( , )k ⋅ ⋅  be the kernel function used when 

training an L(N)L SVM classifier. Then, 
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The first line is the definition of Rademacher complexity, 

where the σi are Rademacher random variables taking values 

{±1}. In the fourth line, we bound the value of the norm of 

the coefficients of the hyperplane in feature space for each 

local SVM. There is one local SVM for each observation. To 

obtain the bound, observe that for the primal SVM 

optimization problem for neighborhood i, 
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we can obtain a feasible solution by setting w = 0, b = 1, and 

ξj = 2 for all j; therefore, the optimal objective is at most 

2CK.  

The other steps in the proof follow from the presentation 

in [25], Theorem 4.12.                

                     End of proof 

 

If we derive bounds for global (traditional) SVM in the 

same fashion (with a fixed C), we would find the following 

upper bound 

 

 2 min{ , }w C N N+ −≤ ,          (8) 

 

where N+ and N−  are the number of positive and negative 

observations, respectively. The bound in Proposition 1 for 

the Rademacher complexity would be the same except that 

the term CK  would be replaced by the larger value 

min{ , }C N N+ − .  

 

Thus we see that the stability bounds for L(N)L SVM are 

tighter than that for traditional SVM by a factor of 

 

 
min{ , }N N

K

+ − .              (9) 

 

V. SOME FINAL REMARKS ON LOCAL SVMS AND OTHER 

LOCAL MODELS 

Local models show better experimental performance than 

traditional globally acting SVM classifiers trained and 

designed on all the data and acting over the whole input 

space. In addition, the stability bounds for L(N)L SVM are 

tighter than that for traditional SVM. These characteristics 

are due to the ability of local classifiers to model complex 

decision functions by a collection of less complex local 

linear and/or nonlinear approximation. Local models are 

ideal for small and medium, high dimensional and sparse 

data sets often found in health sciences, bioinformatics and 

related areas. However, faced with huge data sets there is a 

tiny computational price to pay during the training 

originating from the need to select K NNs which basically 

requires finding all the distances between all the data in 

order to select K nearest neighbors to each data point. This is 

very well known issue with KNN based classifiers and there 

are many proposals to speed up process of finding K NNs. 

Any of the method proposed (and there have been quite a 

few recently) can be applied here too. There is however good 

news in the availability of massive computing boards having 

hundreds (and, at the moment, going to thousands) of 

computing cores by which the mathematically simple 

floating point calculations of distances can be executed very 

fast. Thus, very soon, building local classifiers will be a fast 

process even faced with huge data sets. 

The local classifiers proposed here are good remedies for 

a very well known soft spot of the traditional KNN 

classifiers which is that they have been heavily influenced by 

noisy data. Building the local SVMs by using penalty 

parameter C, and allowing in this way outlying points on the 

wrong side of the margin, increases the accuracy of local 

models significantly. In addition, there is one more property 

of K NN classifier which is both good and not-that-good. 

Namely, unlike at the traditional SVMs, the information 

presented in training data is never lost in the approach 

presented here (this is a good part) because all the data are 

saved on the machine (which is not-that-good part). 

Finally, we remark on solving regression tasks by using 

local SVMs and/or other local classifiers. The approach 

presented here can be readily applied to the regression 

problems in the manner as presented in [12]. L(N)L SVM 
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algorithm is a natural tool for solving multiclass problems. 

This property makes it very eligible for solving regression 

problems where the basic difference in respect to the 

classification is that the output values are real numbers. The 

direct way of transferring the regression problem into the 

classification task is to perform the discretization of the 

target vector y into a set of N classes. This is similar (in fact, 

it is almost same as) defining the ‘ε-insensitivity zone’ (a.k.a. 

ε-tube) which controls the accuracy of the approximation of 

the traditional SVMs in a regression. However, unlike in 

later, the L(N)L SVM algorithm (after the discretization) 

solves the regression problem as the multiclass classification 

task. In such a formulation, the use of the L(N)L SVM is 

natural. 

VI. CONCLUSION 

The paper introduces locally linear and/or nonlinear SVM 

classifier algorithms as well as the other local models for 

solving classification problems. L(N)L SVMs are natural 

solvers of multiclass classification tasks. The algorithms use 

the ratio of the between-group to within-group sums of 

squares for features weighting but a model presented here 

works for any other weighting scheme. LL SVM creates a 

local SVM model over K NNs data to the query q and it 

displays great performance in beating traditional SVM, ALH 

and eleven other algorithms averaging over eleven 

benchmarking datasets. This is attributed to the ability of 

local classifiers to model complex decision functions by a 

collection of less complex local approximations. In addition, 

if LL SVMs are designed they create guaranteed maximal 

margin classifiers in the original input features space. 

Theoretical evidence provided in the paper shows that the 

stability bounds for L(N)L SVM are tighter than that for 

traditional SVM. Due to the natural capacity for solving 

multiclass problems L(N)L SVM is also an ideal tool for 

solving regression tasks after transforming them into 

multiclass classification problems. 
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